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Abstract—Covariance matrices play a major role in statis-
tics, signal processing and machine learning applications. This
paper focuses on the semiparametric covariance/scatter matrix
estimation problem in elliptical distributions. The class of el-
liptical distributions can be seen as a semiparametric model
where the finite-dimensional vector of interest is given by the
location vector and by the (vectorized) covariance/scatter matrix,
while the density generator represents an infinite-dimensional
nuisance function. The main aim of this work is then to provide
possible estimators of the finite-dimensional parameter vector
able to reconcile the two dichotomic concepts of robustness
and (semiparametric) efficiency. An R-estimator satisfying these
requirements has been recently proposed by Hallin, Oja and
Paindaveine for real-valued elliptical data by exploiting the Le
Cam’s theory of one-step efficient estimators and the rank-based
statistics. In this paper, we firstly recall the building blocks
underlying the derivation of such real-valued R-estimator, then
its extension to complex-valued data is proposed. Moreover,
through numerical simulations, its estimation performance and
robustness to outliers are investigated in a finite-sample regime.

Index Terms—Semiparametric models, robust estimation, el-
liptically symmetric distributions, scatter matrix estimation, Le
Cam’s one-step estimator, ranks.

I. INTRODUCTION

Semiparametric inference is the branch of theoretical and
applied statistics dealing with point estimation or testing in
semiparametric model. In short, a semiparametric model is a
family of probability density functions (pdfs) parameterized
by a finite-dimensional parameter vector of interest, say ¢ €
Q C R? (or C?), and by an infinite-dimensional parameter,
say g € G, where G is a suitable set of functions [1]. In the
vast majority of applications where semiparametric models are
used, the infinite-dimensional parameter g plays the role of a
nuisance function.

Despite of their generality and practical relevance, the use of
semiparametric models in Signal Processing (SP) applications
is still limited to very few cases. To name some examples,
we refer to [2] for a semiparametric approach to blind source
separation, to [3] for robust non-linear regression and to [4] for
empirical likelihood methods applied to covariance estimation.
More recently, in [5,6], the class of the Real and Complex
Elliptically Symmetric (RES and CES) distributions [7] has
been revised from a semiparametric standpoint (see also [8]—
[12] in the statistical literature). The family of Elliptically
Symmetric (ES) distributions is in fact a typical example of
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semiparametric model where the finite-dimensional parameter
vector of interest is given by the location vector p and
by the (vectorized version of) the covariance/scatter matrix
3., while the density generator g can be considered as a
nuisance function. In particular, in [5] the RES class has been
framed in the context of semiparametric group models, then
a Semiparametric Cramér-Rao Bound (SCRB) for the joint
estimation of p and ¥ in the presence of the nuisance density
generator g has been derived. The second work [6] extended
the previously obtained SCRB to semiparametric estimation of
complex parameters in CES distributed data. A semiparametric
version of the celebrated Slepian-Bangs formula has been also
proposed. However, the following fundamental question has
not been addressed in [5,6] which were focused on lower
bounds: is it possible to derive a robust and semiparametric
efficient estimator of the covariance/scatter matrix % of a set
of ES distributed observations? As we will see ahead, a first
positive answer to this question has been provided in [10] for
the RES case while its extension to CES distributions will be
given in this paper.

To start, let us take a closer look to the two main features
that this estimator should have. Firstly, it should be semi-
parametric efficient, at least asymptotically. In other words,
we require that the error covariance matrix of this estimator
should be equal to the SCRB given in [5,6] as the number of
observations goes to infinity. The second desirable feature is
the distributional robustness. As said before, a semiparametric
model allows for the presence of a nuisance function that,
in the case of ES distributed observations, is the unknown
density generator g characterizing the shape of their actual
distribution. So, a distributionally robust estimator is basically
an estimator of 3 whose statistical properties do not rely on
g € G, and consequently on the actual ES distribution of the
data. It is worth to underline that, even if robust estimators of
covariance matrices are already available in the statistics and
SP literature ([7,13]-[17], [18, Ch. 4] and references therein),
they fail to be semiparametric efficient as shown in [5,6].

A good candidate for the estimator that we are looking for
is the one proposed by Hallin, Oja and Paindaveine in their
seminal paper [10]. Building upon their previous work [9], in
[10] the Authors propose an estimator of the constrained, real-
valued scatter matrix X in RES distributed data that meets
the two requirements of nearly semiparametric efficiency
and distributional robustness. To achieve the semiparametric
efficiency, the Le Cam’s theory of one-step efficient estimators
[19], [20, Ch. 6] has been exploited. In fact, as showed
by Le Cam, it is possible to derive asymptotically efficient
estimators that, unlike the Maximum Likelihood (ML) one, do
not search for the maxima of the log-likelihood function. This



is of great importance in practical applications, where the ML
estimator can present computational difficulties in the resulting
optimization problem or even existence/uniqueness issues [21,
Ch. 6]. The second requirement of distributional robustness has
been addressed in [10] using a rank-based approach [22], [23,
Ch. 13]. Originally developed in the context of order statistics,
rank-based methods have been used in robust statistics to
derive distributionally robust estimators and tests that are
usually referred to as R-estimators and R-tests [24, Ch. 3].

After a semiparametric formalization of the shape matrix
estimation problem given in Section II, the subsequent Section
III provides a review of the methodology used in [10] to derive
a semiparametric efficient R-estimator of the constrained, real-
valued, scatter matrix > in RES distributed data. This first
part has the twofold goal of i) introducing two statistical
procedures (i.e. semiparametric one-step estimators and rank-
based robustification) that are not yet widespread among
the SP community and then ii) showing how they can be
applied to derive original estimators of scatter matrices. To this
end, additional in-depth supporting material will be provided
separately from the main body of the paper. In addition, the
code containing our Matlab and Python implementation of
both real- and complex-valued R-estimator can be found at
[25]. Section IV focuses on the extension of the previously
derived outcomes to the complex-valued parameter case with
Complex ES distributed data. In Section V the Mean Squared
Error (MSE) performance and the robustness properties of
the proposed semiparametric efficient R-estimator will be in-
vestigated through numerical simulations in a “finite-sample”
regime. The theoretical analysis, in fact, can only provide us
with asymptotic guarantees on the good behavior of an estima-
tor but, since in practice the number of available observation is
always finite, a “finite-sample” performance characterization is
necessary as well. To this end, the error covariance matrix of
the proposed R-estimator (evaluated using independent Monte
Carlo runs) will be compared with the SCRB in [5,6] in
different scenarios. The second feature that is going to be
assessed in Section V is the robustness to the presence of
outliers in the observations. In the present context, an outlier
can be represented by an observation vector whose distribution
does not belong to the ES family.

Algebraic notation: Throughout this paper, italics indicates
scalar quantities (a), lower case and upper case boldface
indicate column vectors (a) and matrices (A), respectively.
Each entry of a matrix A is indicated as a;; = [A]; ;. In
defines the NV x N identity matrix. The superscripts *, T and
H indicate the complex conjugation, the transpose and the Her-
mitian operators respectively, then A" = (A*)T. Moreover,
A—T L (A—l)T — (AT)_I, A—* L (A_l)* — (A*)—l and
A-H 2 (A-HH = (AM)~1. The Euclidean norm of a vector
a is indicated as ||a||. The determinant and the Frobenius norm
of a matrix A are indicated as |A| and ||A||r, respectively.
The symbol vec indicates the standard vectorization operator
that maps column-wise the entry of an N x N matrix A in an
NZ2-dimensional column vector vec (A). The operator vec(A)
defines the N2 — 1-dimensional vector obtained from vec (A)
by deleting its first element, i.e. vec (A) £ [a1,vec(A)T]T.
A matrix A whose first top-left entry is constrained to be equal

to 1, i.e. ayp £ 1, is indicated as A;.

For any N x N symmetric matrix A:

o vecs(A) indicates the N (N +1)/2-dimensional vector of
the entries of the lower (or upper) triangular part of A.

e According to the notation previously introduced,
vecs(A) = [ay1,vecs(A)T]T.

e Ifaj;; =0, then My is the N(N +1)/2—1 x N? matrix
such that (s.t.) M vecs(A) = vec (A). Note that M}
can be obtained from the duplication matrix Dy [26,27]
by removing its first column. Note that D is implicitly
defined as the unique N2 x N (NN +1)/2 matrix satisfying
Dyvecs(A) = vec (A) for any symmetric matrix A.

Statistical notation: Let x; be a sequence of random vari-

ables in the same probability space. We write:

op(l) if limj,ooPr{|z| >€} = 0,Ye > 0
(convergence in probability to 0),

e x; = Op(1) if for any e > 0, there exists a finite M > 0
and a finite L > 0, s.t. Pr{|z| > M} < eVl > L
(stochastic boundedness).

e I =

The cumulative distribution function (cdf) and the related
probability density function (pdf) of a random variable x or a
random vector x are indicated as Px and px, respectively.
For random variables and vectors, 4 stands for ‘“has the
same distribution as”. The symbol Moy indicates the con-

vergence in distribution. According to H’l%o notation introduced
in [5,6,28], we indicate the true pdf as po(x) = px (x|®o, go)
where ¢¢ and go indicate the true parameter vector to be
estimated and the true nuisance function, respectively. We
define as Eg o{f(x)} = [ f(x)px (x|, g)dx the expectation
operator of a measurable function f of a random vector
X. Moreover, we simply indicate as Fo{-} the expectation
with respect to (w.r.t.) the true pdf po(x). The superscript x
indicates a v/ L-consistent, preliminary, estimator ¢A>* of ¢y, s.t.
V'L (¢* — o) = Op(1). The dependence of x of a function
f(x) is often dropped for notation simplicity: f = f(x).

II. THE SEMIPARAMETRIC SHAPE MATRIX ESTIMATION

Let {xl}lL:1 be a set of N-dimensional, real-valued, inde-
pendent and identically distributed (i.i.d.) observation vectors.
Each observation is assumed to be sampled from a real
elliptical pdf [7,29,30] of the form:

px (xi|p, 2,9) = 27 NP2 20 (i — ) T2 (% — ) s

1
where p € RY is a location vector, & € MY is a
N x N scatter matrix in the set ./\/l]%, of the symmetric,
positive definite, real matrices. The function g € G is the
density generator, an infinite-dimensional parameter that
characterizes the specific distribution in the RES family. In
order to guarantee the integrability of the pdf in Eq. (1), the
set of all the possible density generators is defined as G =
{g: Rt = R | [tV 1g(t)dt < oo, [ pxdx =1}[29].
Each random vector whose pdf is given by Eq. (1), say
RESNn(p,X,g), admits the following stochastic
representation [7,29]:

X ~

x L+ REVu, )



where u ~ U(Sg~ ) is uniformly distributed on the unit sphere
Sev 2 {u € RY|||u|| = 1}, R & VQ is called modular
variate while Q, usually referred to as 2nd-order modular
variate, is such that (s.t.)

QL (31— ) "B (g — ) 2 QYL 3)
Moreover, Q has pdf given by:
po(q) = (x/2)NT(N/2)" N * 7 g(qg), )

where T'(-) stands for the Gamma function.

The expression of the elliptical pdf in Eq. (1) and the
stochastic representation in Eq. (2) are not uniquely defined
due to the well-know scale ambiguity between the scatter
matrix 3 and the density generator g. Specifically, from
Eq. (1), it is immediate to verify that RESy(u, X, g(t)) =
RESN(w,cX, g(ct)),Ye > 0. In an equivalent way, from
Eq. (2), we have that x < p + REY2u £ p +
(c™'R)(cX?)u, Ve > 0. This readily implies that 3 is iden-
tifiable only up to a scale factor and consequently only a scaled
version of 3 can be estimated. To avoid this identifiability
problem, following [7,11,12], let us define the symmetric and
positive definite shape matrix V as:

V =3/s(%), Q)
where s : M%, — RT is a scalar functional on MY, satisfying
the following assumptions [11,12]:

Al Homogeneity: s(c-X) =c- s(X),Ve > 0,
A2 Differentiability over MY, with a‘r’éf)l £0,
A3 S(IN) =1. ’

Typical examples of this class of scale functional are s(3) =
[Z]11, 8(8) = tr(X)/N and s(X) = |Z|Y/N. Each scale
functional s corresponds to a differentiable constraint on the
shape matrix V. As an example, the constraints induced by
the three above-mentioned scale functionals are vy = 1,
tr(V) = N and |V|V/N = 1. It is easy to verify that,
under Al, A2 and A3, the first top-left entry of V, i.e. vi1,
can always be expressed as function of the other entries.
This consideration, along with the fact that V is symmetric
by definition, suggests us that, to avoid the identifiability
problem, in the semiparametric estimation problem, we just
need to consider the vector vecs(V) as unknown. Moreover,
as discussed in [11] and verified here in Sec. V, the optimality
properties of the proposed semiparametric estimator of the
shape matrix do not depend on the particular scale functional.
Consequently, in order to avoid tedious matrix calculation
that may confuse the derivation of the algorithm, we choose
the simple scale functional s(X) = [X]; 1, i.e. the one that
constrains the shape matrix V to have its first top-left entry
equal to 1. In the rest of the paper, a generic shape matrix
satisfying this constraint is indicated as V; according with
the notation previously introduced.

Having said that, we can formally state the semiparametric
estimation problem that we are going to analyze in the
following sections. Let {2 C R? be a parameter space of
dimension ¢ = N(N+3)/2—1 (= N+N(N+1)/2—1 where

the “—1” term is due to the 1-dimensional scale constraint).
Each element of (2 is a vector ¢ of the form:

¢= (" vees(V1)T) ", ©6)

where p € RY and V; € M%,. Let us define the RES semi-
parametric model as the following set of (uniquely defined)
pdfs:

Py.g = {pX‘pX(XMS,g) = 2*N/2|\[1‘71/2><
9(Ga =) Vil(xi—p)ipeged).

The semiparametric estimation problem that we want to ad-
dress is then to find a robust and semiparametric efficient
estimator of a true parameter vector ¢g € () in the presence
of a nuisance function gg € G.

)

ITI. AN R-ESTIMATOR FOR SHAPE MATRICES IN RES DATA

The aim of this section is to trace the procedure adopted in
[10] to derive the R-estimator of real-valued scatter matrices
in RES data. In particular, the concepts of Le Cam’s one-step
estimators and ranks-based robustification will be firstly intro-
duced and their application to the particular semiparametric
estimation problem at hand discussed. Finally, a ready-to-use
expression of the resulting R-estimator is provided, while the
related Matlab and Python implementation is given in [25].

A. Semiparametric efficient one-step estimators

The main ingredient for the derivation of a one-step estima-
tor for the parametric part (location vector and scatter matrix)
of the semiparametric RES model Py 4 in Eq. (7) is the notion
of efficient score vector. Specifically, the efficient score vector
Sa.g, for the estimation of ¢ € (2 in the presence of a nuisance
density generator gy € G is given by [28], [5, Th. IV.1]:

Se.90(X1) = 86,00 = 59,90 — T1(S6.90/ To): ®)
where s¢ g, (x;) is the usual score vector defined as:
A Sp.go (X1)
Se.g0(X1) = Ve Inpx (%], g0) = #-90 >,
.90 (X1) = Vo Inpx (%19, 90) ( Syecs(V1).g0 (X1) o

and II(sg,4,|75,) is the orthogonal projection of the score
vector s¢ g, in Eq. (9) on the semiparametric nuisance tangent
space T, [5,31]. Then, the semiparametric counterpart of the
Fisher Information Matrix (FIM) is the efficient semiparamet-
ric FIM (SFIM) [28],[5, Th. IV.1]:

i((ﬁ‘go) 2 E¢ .90 {§¢,go (X)éq-'%go (X)T}'

Finally, we introduce the efficient central sequence as:

_ _ L
As.g (X1,...,X1) = Ag.g L1712 Zl:l Se.90 ().
(1D
Note that the previous three quantities depend on the true, and
generally unknown, density generator gg.
The next Theorem provides us with the expression of the
one-step estimator of ¢ together with its asymptotic properties.

(10)

Theorem 1. Let {x;}1_ | be a set of i.i.d. observations sampled
from a RES distribution whose pdf po(x) € Pg, 4 in Eq. (7).



Let gf)* be any preliminary ~/L-consistent estimator of the
T

true parameter vector ¢ = (pg ,vecs(V19)") . Then, the

semiparametric one-step estimator

bs = ¢* + L7171 |g0) " Ay s (12)
has the following properties:
PS1 +/L-consistency
VL (s~ ) = 0p(1), (13)
PS2 Asymptotic normality and efficiency
VI (6= o) ~ N(O.I(olgo) ™), (4
L—oo

where I(¢o|g0) ™t = CSCRB(po, V1,0|g0) and the con-
strained semiparametric CRB (CSCRB) [5] is evaluated
for the constraint [V gl11 = 1.

Remark: The proof of Theorem 1 is given in [10] (see
the proof of the Proposition 2.1). In addition, we refer the
interested reader to our supporting material for a tutorial
introduction of the Le Cam’s theory underlying it.

Even if semiparametric efficient, the “clairvoyant” estimator
¢38 in Eq. (12) relies on the true, and generally unknown,
density generator g, so it is not useful for practical inference
problems. Consequently, a distributionally robust alternative
to (;ASS has to be derived, at the price of a possible loss in
efficiency. Before addressing the crucial issue of robustness,
we provide a “tangible” expression of the clairvoyant estimator
of V; that will be useful ahead.

B. Semiparametric clairvoyant estimator of shape matrices
To construct gﬁs in Eq. (12) we need explicit expressions
of the efficient score vector Sg 4, = (§I7go,§;cs(vl)7go)T,
the efficient SFIM I(¢|go) and a preliminary v/L-consistent
estimators ¢A>* of ¢¢. Building upon the results in our previous
work [5], 8, and Syec5(v;) can be expressed as [5, Eq. (53)]:

Sgo = Sugo = —2V/Qubo(Q) VT P, (1)
Svecs(V1),90 = —Qit0(Q1)Kv, vec(wu; ), (16)

where @; is defined in Eq. (3) and
Kv, = My (V;l/2 ® V‘1/2) iy, (A7)
w = (QV1) 2 (x — p), (18)
Yo(t) = dlngo(t)/dt, (19)
ey = In2 = N7 vee(In)vee(In) T, (20)

where My is defined in the notation section. Before moving
forward, some comments are in order. As already proved
n [5], the efficient score vector S, 4, in Eq. (15) of the
mean vector is equal to the score vector s, 4., or in other
words, §,, 4, is orthogonal to the nuisance tangent space 7.
This implies that, knowing or not knowing the true density
generator go does not have any impact on the asymptotic
performance of an estimator of p. The expression of the
efficient score vector for the shape matrix in Eq. (16) of this

paper comes directly from Eq. (53) of [5]. Even if clearly
related, the main difference between these two expressions is
in the fact that, while in Eq. (53) of [5] the gradient is taken
w.r.t. vecs(Xg) where X is the unconstrained scatter matrix,
in this paper the gradient is taken w.r.t. vecs(V;) where V;
is the constrained shape matrix s.t. [V1];; = 1. This is the
reason why we have the matrix My instead of the duplication
matrix Dy as in Eq. (53) of [5]. Moreover, Eq. (16) follows
from Eq. (53) of [5] through basic matrix algebra and the fact
that tr(wu;") = ||w]|* = 1,V and allows us to write a more
compact expression for Syecs(v,),go-

The efficient SFIM I(¢|go) in Eq. (10) can be immediately
obtained from the results in Eq. (15) and Eq. (16) and from
the expression given in [5, Eq. (54)] as:

> (2D

I(¢|g0) 2 E,g0{8¢,90 (X)86,90 (X)T}

— ( I(plgo) 0

B 0" T(vecs(V1)lgo)-
The block-diagonal structure of I(¢|go) in Eq. (21) implies
that a lack of a priori knowledge about the mean vector
does not have any impact on the asymptotic performance of an
estimator of the shape matrix V. In other words, the estimate
of p and the one of V; are asymptotically decorrelated. This
and the above-mentioned fact that 5, 40 L 7Ty, allow us to
consider the estimation of @ and the one of V; as two separate
problems. For this reason, from now on, we will focus our
attention only on the estimation of V.

From Eq. (16) and building upon the expression already

derived in Eq. (56) of [5], we have that:

I(vecs(V1)|go) = onKVIKq—,17 where (22)

o = 2E{Q*%0(’}/N(N+2). (23)

By substituting the expression of Syecs(v,),g, given in Eq. (16)
in the definition of the efficient central sequence in Eq. (11),
we get:

_ L
Ay, 5 = L7 V?Ky, Zz=1 Qubo(Qr)vec(uyu,').

Finally, we just need to put Eq. (24) and the expression of
I(vecs(V1)|go), given in Eq. (22), in the definition of one-step
estimator in Eq. (12). This yields the following estimator:

(24)

vees(Vy ) = vees(V?}) — ! [KV*KT }_1 X
Lao Vi (25)
L Ax Ak rax\ T
Kg; 21:1 Qi o(QF )vec(af (47) 1),
where: X R
QF £ Ga— ) VI (i — %), (26)
a2 (Q) VAV (- ), 27)

while, as the notation suggests, the matrix Kg v is obtained
from Kv, in Eq. (17) by substituting V; with 1ts preliminary
estimator V*

The last thing to do is to choose preliminary estimators for
the mean vector and for the shape matrix. To this end, we
can use the joint Tyler’s shape and mean vector estimator [32,
Eq. (6)], i.e. i* = fi7, and {\7{ = VLTy with the constraint



[\Afl,Ty]n = 1. This is a good choice since such ¢* is VL-
consistent under any possible density generator g € G.

As previously said, the clairvoyant estimators provided
in Eq. (25) cannot be directly exploited for semiparametric
inference since it still depends on the true density generator
go from two different standpoints:

i) Statistical dependence: The estimator {71,5 in Eq. (25)
relies on the random variables {Q¥}~ , whose pdf de-
pends on go through the one of the data {x;}~_, (see Eq.
(26)).

ii) Functional dependence: The scalar o in Eq. (23) is
function of E{Q?1y(Q)?} that depends on gy through
the function ¢y in Eq. (19) and the pdf of Q in Eq. (4).

In [10], Hallin, Oja and Paindaveine showed that rank-based

statistics can be exploited to overcome the above-mentioned
dependences and obtain a distributionally robust estimator
of the shape matrix able to dispense with the knowledge
of go. However, to fully understand the theory underlying
the outcomes of [10], a strong knowledge of the Le Cam
theory and of its invariance-based extension to semiparametric
framework [33] is required. The aim of the following subsec-
tions is then to supply any SP practitioner with a “ready-to-
use” formulation of the resulting R-estimator. Anyway, the
interested reader can find additional tutorial-style discussions
about the semiparametric extension of the Le Cam’s theory in
the supporting material of this paper.

C. Preliminaries on rank-based statistics

Let {z;}{, be a set of L continuous i.i.d. random vari-
ables s.t. x; ~ px,Vl. We define the vector of the order
statistics as vx = [xp(1),%p(2),.--, %)) whose entries
rray < Tpe) < o0 < ILgL) are the values of {z;}F,
ordered in an ascending way.' Then, the rank r; € N/{0}
of x; is the position index of z; in vx. Finally, we define
rx 2 [r1,...,71]T € NI as the vector collecting the ranks.

Lemma 1. Let K be the family of score functions > K :
(0,1) — R* that are continuous, square integrable and that
can be expressed as the difference of two monotone increasing
functions. Then, we have:

1) The vectors vx and rx are independent,

2) Regardless the actual pdf px, the rank vector rx is
uniformly distributed on the set of all L! permutations

on {1,2,...,L} and ! stands for the factorial notation,
3) For each | = 1,...,L, we have that K LT]H) =

K (u;) + op(1) where K € K and w; ~ U[0,1] is a
random variable uniformly distributed in (0,1).

Remark: The proof can be found in [22], [23, Ch. 13].

To understand why Lemma 1 is useful to derive a distribu-
tionally robust and semiparametric efficient estimator of the
shape matrix we should take a step back.

Note that, since z;, VI are continuous random variable the equality occurs
with probability 0.

2Even if this can create some ambiguity, we decide to indicate the elements
in JC as “score functions” in order to maintain the consistency with the
terminology used in classical references about ranks.

D. Robust approximations of Avs, 4, and I(vecs(V1)|go)

From the stochastic representation in Eq. (2), there is a one-
to-one correspondence between a RES distributed observation
vector x; ~ RESN(p, 3, go) and the couple (Q;, w;), where
Q 4 Q is defined in Eq. (3) and whose pdf pg is given in
Eq. (4), while u ~ U(Sg~ ). Then, Point 2) in the Lemma 1
tells us that the distribution of rg is invariant w.r.t. the pdf pg
in Eq. (4) that depends on the actual, and generally unknown,
density generator gg € G. This feature is very attractive for
robust inference since it allows us to derive rank-based (or
R-) estimators and tests that are distributionally robust. Point
3) of Lemma 1 provides us with the missing piece to obtain
a distributionally robust approximation of the efficient central
sequence Av, 4. Specifically, let

Pgo(q) = (n/2)N?T(N/2) ! /Oq N2 Lgo(t)dt  (28)

be the true, and generally unknown, cdf of 2nd-order modular
variates whose pdf is given in Eq. (4). Let us now recall the
basic fact that (see e.g. [34, Th. 2.1.10])

Poo(w)=Qi, uw~U01], Q ~PooVl (29

where Pélo indicates the inverse function of the cdf. Finally,
we have to introduce the “true” score function

Ko(u) = —Pgy(u)ho(Pgo(u), we(0,1),  (30)

that can be shown to belong to the set /C [35]. Note that K|
depends on the true density generator gy through vy in Eq.
(19) and Pg o in Eq. (28). From Point 3) of Lemma 1 and by
using the relation Eq. (29) we have

Ko (L:l_1> = —Quo(Q1) +op(1).

Consequently, substituting Eq. (31) in Eq. (16) yields to the
following approximation of the efficient central sequence in
Eq. (24):

€1y

L

— 1
Av, g = ﬁKvl >

=1

r
Ky <L—il—1> vec(wu,; ) + op(1).

(32)
The expression in Eq. (32) depends “statistically” only on the
ranks r; and on the random vectors u; whose distributions
are invariant w.r.t. the actual RES distribution of the data.
However, we still have a functional dependence from gy due
to the score function K. To get rid of this dependence, we
may adopt a “misspecified approach” [36]: since we do not
know which is the true density generator qo, let us build
the score function K, by substituting in Eq. (30) a, possibly
misspecified, g € G instead of the unknown go. Consequently,
by substituting V; with a consistent preliminary estimator V7,
a distributionally robust approximation of the efficient central
sequence Ay, in Eq. (24) can be obtained as:

L
~ 1 r*
Ay, & —=Kg. > K ( L )vec(ﬁ*(ﬁ*)T) (33)
AVa V* g l l ?
VL Vi L+1
where 7} is the rank of Ql* already defined in Eq. (26) and
Uy is given in Eq. (27). As a useful example of score function



K4, we may cite the van der Waerden score function K, qw .
Specifically, K4 is obtained by assuming a, possibly mis-
specified, Gaussian distribution for the acquired data. Since,
under Gaussianity, the density generator is g (t) = exp(—t/2)
and Q in Eq. (3) is distributed as a x-squared random variable
with N degrees of freedom, i.e. @ ~ x?(NV), from Eq. (30)
we have:

Koaw (u) = ¥ (u)/2,

where W(u) indicates the cdf of x?(N). On the same line, if
we assume a t-distribution for the collected data, we obtain
the score function:

u € (0,1), (34)

Ko (= N HOEL @)

= 5 S 0713
v 2w+ NFyL(w) (0.1)

(35
where Fi ,, (u) stands for the cdf of a Fisher random variable
with N and v € (0,00) degrees of freedom, i.e. Fy .
In particular, the expression of K, comes from the fact
that, under an assumed ¢-distribution, the density generator
is g, (t) = (1 +t/v)~W+N)/2 while Q/N ~ Fy,, [30, Ex.
2.5]. Note that, from the properties of the F'-distribution [37,
Ch. 27], it follows that lim, o Ky, (u) = Kyqw (u). This
is not surprising since it is well known that the ¢-distribution
collapses into the Gaussian one as v — oo. We note, that other
possible score function may be built upon the loss functions
discussed in [38].

As expected, a misspecification of the density generator
will bring to a loss in semiparametric efficiency. Remarkably,
as we will see in Sec. V, such performance loss are small,
especially if the Gaussian van der Waerden score is adopted.
A theoretical justification of this surprisingly small loss of
efficiency may be related to the so-called “Chernoff-Savage
result” for non-parametric R-tests [39]. Some preliminary
investigation towards this direction have been provided in [35],
but a comprehensive and in-depth analysis of this phenomenon
is still missing. Even if of crucial importance, this aspect falls
outside the aims of this paper and it is left to future works.

Let us now focus on the efficient SFIM in Eq. (22). In [10],
it is proved that I(vecs(V1)|go) can be approximated as:

I(vecs(V1)|go) = &K{,IK‘I,I +op(1), (36)

where & is a consistent estimator of g in Eq. (23). In
particular, in [10, Sec. 4] it is shown that a possible candidate
for & is:

a= ||A\7;+L_1/2H07A\7{H/HK\A/IK\TA/IVECS(HO)‘M

(37

where H” may be any symmetric matrix whose first top-
left entry is equal to O, i.e. [H°);; = 0. Therefore, the
consistent estimator & depends on this “small perturbation”
matrix HO that can be considered as an hyper-parameter to
be defined by the user. Some consideration on the choice
of H® will be provided in Sec. V-C where a numerical
analysis of the performance of the proposed shape matrix
estimator is presented. Note that the estimator & in Eq. (37)
is only an example of a possible estimator for ag, but other
procedures may be adopted as well. In [10, Sec. 4.2] for
example, an ML-based approach is implemented to derive

a consistent and efficient estimator for «g. However, such
ML-based estimator requires the solution of an optimization
problem that may become computationally heavy as the matrix
dimension increases.

We conclude this subsection with an important remark on
the distributional robustness of Av* in Eq. (33) and of the
approximation of the SFIM given in Eq (36). These two terms,
needed to build a robust version of the R-estimator in Eq. (25),
depend on four random quantities: the preliminary estimator
V71, the ranks 7/, the vectors Gj and &. If, as consistent
preliminary estimator, we use a distribution-free estimator as
the Tyler’s one, it can be easily shown that r; and G are
distribution-free as well. This implies that the “approximated”
central sequence Af,; is itself distribution-free [10, Prop.
2.1]. This is not the case for the estimator & in Eq. (37).
In fact, even if A\A,* is distribution-free, this is not true for its

“perturbed” version Av* 1—1/2pq0 a8 proved in [10, Prop. 2.1,
Point (iv)]. Consequently, the resulting R-estimator will not be
fully distribution-free. However, it still remain distributionally
robust, since & is proven to be a consistent estimator of ag
for every possible density generator g € G [10, Sec. 4].

E. The final expression for the real-valued R-estimator

The desired R-estimator of real-valued shape matrices in
RES distributed data can then be obtained from the the ex-
pression of the semiparametric one-step estimator in Theorem
1 by replacing the efficient central sequence A and
the efficient SFIM I(vecs(V1)|go) with their appr0x1mat1ons
provided in Egs. (33) and (36), respectively. In particular, a
distributionally robust, one-step estimator of V; is given by:

Vecs(\Afl,R) = vecs(V?}) +

L rl* Akl Ak T
Koy 0 o (7107 ) veetai @) ),

where {7}, are the ranks of the random variables {Q} }~_,
defined in Eq. (26), while G} is defined in Eq. (27). Again,
as preliminary estimator of the (constrained) shape matrix we
may use the Tyler’s estimator Vi =V 1.

Before moving on, one last comment is in order. It is
immediate to verify from the expressions of V1 rand &, given
in Egs. (38) and (37) respectively, that the R-estimator, as
function of the score K, satlsﬁes the following homogeneity
property: Vi Rr(cKy) = V1 r(K,) for every positive scalar
¢ > 0. However, if a different estimator of oy is adopted, this
may not be the case and the score should be normalized, e.g.
as fo = N [40, Assumption S3].

IV. EXTENSION TO COMPLEX ES DISTRIBUTIONS

o Koy %)

Building upon the previously obtained results, this section
aims at providing an extension of the R-estimator in Eq. (38)
to the complex-valued shape matrix estimation problem in
CES-distributed data. As already shown in [7], [18, Ch. 4] and
[6, Def. II.1], there exists a one-to-one mapping between the
set of the CES distributions and a subset of the RES ones. This
implies that the theory already developed for the real-valued



case can be applied straight to complex-valued data. However,
the use of a real representation of complex quantities usually
leads to a loss in the clarity and even in the “interpretability”
of the results. This is because the entries of the complex
parameter vector are “scrambled” by the C — R? mapping
and the analysis of the statistical properties of the resulting
real version of the estimator may be quite cumbersome. This
problem is even more serious when we have to estimate a com-
plex matrix where, in addition to the “scrambling” of the real
and imaginary parts due to the C — R? mapping, we must take
care of the row-column ordering. Having a mathematical tool
that allows us to operate directly in the complex field enables
us to represent the entries of the parameter vector/matrix in a
compact way gaining a lot in terms of both interpretability and
feasibility of the obtained estimator. Best practice is then to
use the Wirtinger calculus [41]-[44]. Basically, the Wirtinger
calculus generalizes the concept of complex derivative to non-
holomorphic, real-valued functions of complex variables. In
our recent paper [6], the Wirtinger calculus has been exploited
to derive the SCRB for the joint estimation of the complex-
valued location vector and scatter matrix of a set of CES
distributed data. In particular, the complex-valued counterparts
of the efficient score vector and of the SFIM for shape matrices
in CES data have been evaluated in [6]. As for the real-valued
case, these two quantities are the basic ingredients to derive
a complex version of the R-estimator in Eq. (38). Note that,
due to the strong similarity between the properties of the CES
and RES distributed random vectors, in the following we will
mostly reuse the same notation introduced in Section II for
the corresponding entities.

A. CES distributed data: a recall

Let {z}-, € CVN be a set of complex i.i.d. obser-
vation vectors. Let Gc be the following set of functions
Gc = {h:Rt = RY| [TtV "Ih(t)dt < oo, [prdz =1}
[7]. Moreover, we indicate with M% the set of the Hermitian,
positive definite, NV x N complex matrices.
Any CES-distributed random vector z; = Xp + jX1; ~
CES(u, X, h) satisfies the properties [71,[6, Sec. II]:
o z; € CV is CES distributed iff [x,,x;,]T € R*" has
a 2N -variate RES distribution, '

o Its pdf pz is fully specified by the location vector p €
CN, by the scatter matrix 3 € M and by the density
generator h € G¢ and it can be expressed as:

pz(zilp, B, h) = [B7h (20— p)"=" @ - w) -
(39)
o Stochastic representation: z, 4 i+ REY2u, where R
is the modular variate and u ~ U(Sc~) is uniformly
distributed on Scnv = {u € CV|||u|| = 1}.
o The 2nd-order modular variate Q = R? is s.t.

QL (m— Sz —p) 2 QLY (40)
and it admits a pdf pg of the form:
palq) = 7 T(N)"'¢" h(q). (41)

Exactly as for the real-valued case, the complex scatter
matrix X is not identifiable and only a scaled version of it

can be estimated. Then, the shape matrix V = X/s(X) has
to be introduced, where s(-) is a scalar functional on /\/l(]c\,
satisfying conditions A1, A2 and A3 given in Sec. II. As for
the real case, among all the possible scale functionals, we
choose s(X) = [X];,1 for simplicity.

At first, we need to define the unknown complex-valued
parameter vector ¢ to be estimated. As shown in [6] and in
analogy with the real-valued case, the estimation of the mean
vector and of the shape matrix are asymptotically decorrelated.
Consequently, we focus only of the shape matrix estimation
from the “centered” data set {z, — fi*}%_,, where i* is any
v/L-consistent estimator of € CV. The interested reader
may find additional considerations of the joint estimation of
p and V7 in [45]. According to the basics of the Wirtinger
calculus, ¢ has to be constructed stacking in a single vector
the unknown parameters and their complex conjugate [41,44].
Then, according to the detailed discussion provided in [6, Sec.
IILA], we have that ¢ = vec(V).

As shown in Theorem 1, the basic building blocks for
a semiparametric efficient estimators are the semiparametric
efficient score vector 8¢ n, = Svec(V,),h, and the efficient

SFIM I(vec(V1)|ho). Both Syec(vy).n, and I(vec(Vi)|ho)
have been already introduced in full details in our previous
work [6] and their expressions are recalled here for clarity.

Let us start by defining the following matrices:

P = [es]es| - |enz], 42)
where e; is the i-th vector of the canonical basis of RY 2,
Ly, = P (Vl—T/2 ® V1—1/2) I 43)

and Hje e(In) has already been defined in Eq. (20). Then, from
the calculation in [6, Sec. IIL.B],’ using some matrix algebra,
we obtain the following expression for the complex efficient

semiparametric score vector

= ~Quo(Q)Lv, vec(uuf),

where 1(t) = dInho(t)/dt, u; £ (Q; V1)~ */?(z; — p) and
@; has been defined in Eq. (40). Note that the function 1 here
is defined by means of the true density generator h( related
to the CES pdf in Eq. (39). Moreover, from [6, Eq. (29)]:

Svee(V1).ho (44)

I(vec(V1)|ho) = ac oLy, LY, where (45)

ac 2 E{Q%%0(Q%}/N(N+1). (46)

It is worth to underline that the matrix P in Eq. (42) has been
introduced in order to take into account the fact that the first
top-left entry of V is equal to 1, i.e. [V1]1,1 = 1, and it does
not have to be estimated.

B. An R-estimator for shape matrices in CES data

The derivation of the complex-valued R-estimator mimics
the one proposed in Section III for the real case. In particu-

3Note that in [6, Eq. (25)] there is a typo. In fact, a minus “—” is missing
in front of the right-hand side.



lar, an approximation of the complex-valued efficient central
sequence can be obtained as:

r

L
~ 1 *
AS é—LA*E K L
ViT VL V& h<L+1

)vec(ﬁl*(ﬁ M, @

where \A/'{ is any /L-consistent estimator of the (complex-
valued) shape matrix and r} is the rank of @) defined, in
analogy with Eq. (26), as

Qr 2 (2 — BNV (2 -

a2 Q) VAV TV (=

B), (48)

— ). (49)
Moreover, the score function K},(-) is the “complex” coun-
terpart of the one defined in Eq. (30). Specifically, K(-) can
be obtained from the expression Eq. (30) by evaluating Py !
and 1y by means of an assumed, and possibly misspecified,
h € G instead of its real counterpart g € G. For example, the
“complex version” of the van der Waerden score function in
Eq. (34) can be obtained from Eq. (30) by noticing that the
complex circular Gaussian distribution has a density generator
given by hceg(t) = exp(—t) while @ ~ Gamma(N, 1) [7].
Then, the “complex” van der Waerden score function is:

K(CvdW(u) = cbg;l(u)v € (07 1)»

where ®« indicates the cdf of a Gamma-distributed random
variable with parameters (N, 1). Similarly, the “complex ver-
sion” of the t,-score in Eq. (35) is given by:

N(2N +v)Fyy  (u)

Key, (u) = ’ ,
= N, )

(50)

€ (0,1), 5D
where, as in Eq. (35), Fan,, (u) stands for the Fisher cdf with
2N and v € (0,00) degrees of freedom, where we used the
fact that heg(t) = (1 + 2t/v)~N+1)/2 and Q/N ~ Fon,
[7]. We note that, as for the real case previously discussed,
we have that lim, o, K¢y, (u) = Kcpaw (u). The complex-
valued approximation of the efficient SFIM in Eq. (45) can be
obtained as:

I(vec(V1)lho) = cLg, LY, +op(1), where  (52)

~ AC AC
ac = ||A\7I+L71/2H%—A\7{||/HL\7I LH‘A/Tvec(H?;)H, (53)

and H% is a “small perturbation”, Hermitian, matrix s. t.
[H2]11 = 0. Finally, putting together the previous results,
the complex extension of the distributionally robust, one-step
estimator in Eq. (38) can be obtained as:

1
Lac
L

N rl* ~ % ~ok\H
Ly; D, K <L+1)Vec(ul (8)7)-

In the following, the pseudocode to implement the proposed
R-estimator is reported, while its related Matlab and Python
code can be found at [25]. A good preliminary estimator of
the constrained, complex-valued shape matrix, may be Tyler’s
estimator Vi =V 7.

-~ -~ —1
vec(Vy ) = vec(V7}) + [L LH] X

(54)

Algorithm 1 Semiparametric efficient R-estimator for V3

z; 0% Vi Ki(-); HO.

Input: z,,...,
Output: Vi g.
l.forl=1t Ldo
2 O (m— WOV N - ),
300+ (QF) VAV (m — %),
4: end for
5: Evaluate the ranks {r},...,7%} of {Q%,...
6

:L’\ %P([V*]iT/z [v*] 1/Q)I_I\J/_ett(IN)’

7 A L L~ 1/2LV* Zl 1 K (L+1) VeC(lll (ﬁf)H)’
8: Evaluate AC -
V*+L 1/2HO

9: Evaluate ac as in Eq. (53).
10: VeC(V1 r) < vec(V*) + L™1/2[a¢ Ly LH ] 1Ag*,

11: Reshape Lec(Vl,R) in a N x N matrix W1th [Vl,R]l,l =1.
12: return Vi g

Qi)

following step 7 with V* —

V. NUMERICAL ANALYSIS

In this section, through numerical simulations, we inves-
tigate three different aspects of the considered R-estimator
of shape matrices: i) its semiparametric efficiency, ii) its
robustness to outliers and iii) its algorithmic properties. In
the following, we limit ourselves to report the results related
to the complex-valued R-estimator proposed in Sec. IV, while
the corresponding analysis of the real-valued case is provided
in the supporting material.

In order to distinguish different estimators, each of them will
be indicated as V“D where v and ¢ specify the estimator at
hand as we will see below. For the sake of consistency with the
SP literaturern scatter matrix estimatAion, in the figures, we re-
normalized VY _ in order to have tr(V{_ ) = N. According to
the discussion on Sec. II, we can define the re-scaled estimator
as:

V¢ =NVY_ /tx(VE). (55)

Plotting the MSE of this re-scaled estimator will allow us to

underline the fact that the semiparametric efficiency property
of the derived R-estimator does not depend on the particular
scale functional adopted. As a reference, in the figures we
also report the Constrained Semiparametric CRB (CSCRB)
derived in closed form in [6]. As performance index for the
shape matrix estimators, we use

¢ = ||E{vec(V§ — Vo)vee(VE = Vo) "}{|r.  (56)
Similarly, as performance bound, we adopt the index:
ecscrB = |[[CSCRB(Z0, go)]l| - (57)

Note that the CSCRB in [6] is evaluated for a generic scatter
matrix, then we have to choose the constraint accordingly to
the definition of the shape matrix at hand (see Sec. II).

We generate the data according to a (true but unknown to the
estimators) complex Generalized Gaussian (GG) distribution.
The interested reader may find additional simulation related to
the complex t¢-distribution in [46]. The data power is chosen



to be 0% = Eg{Q}/N = 4. Finally, all the numerical
indices have been evaluated through 106 Monte Carlo runs.
The density generator of the complex Generalized Gaussian

(GG) distribution is [7]:
p (—2) ,teRT (58)

sD(N)b~—N/s

TND(N/s) O
and, according to the value of the shape parameter s > 0, it can
model a distribution with both heavier tails (0 < s < 1) and
lighter tails (s > 1) compared to the Gaussian distribution (s =
1). The versatility of the GG distribution is useful to assess
the distributional robustness of the proposed R-estimator since
its properties can be checked in Gaussian, super-Gaussian and
sub-Gaussian scenarios. The setting used in our simulation is
as follows:

ho(t) =

e 3 is a Toeplitz Hermitian matrix whose first column is
given by [1,p,...,pVN " 1T; p=0.8¢/>"/% and N = 8.

o The “small perturbation” matrix H2 is chosen to be a
symmetric random matrix s.t. H: = (G¢+GH)/2 where
[GC]ihj ~ CN(O,UQ), [GC]I,I = 0 and v = 0.01. Note
that v has to be small enough to guarantee that Vi‘ +
L=1/?HY € M. A more exhaustive discussion on the
choice of v will be given in Sec. V-C.

As previously discussed, the R-estimator in Eq. (54) de-
pends on two “user-defined” quantities: 1) the preliminary
estimator V71 and 2) the score function K. In order to assess
the impact of their choice on the performance of the R-
estimator, we perform our simulations by using the Tyler’s and
the Huber’s estimators as preliminary estimators. Moreover,
for the Huber’s estimator, three different values of the tuning
parameter ¢ (i.e. ¢ = 0.9,0.5,0.1) have been adopted [7, Sec.
V.C]. Note that the Sample Covariance Matrix (SCM) and
Tyler’s estimators can be obtained from the Huber’s one when
q — 1 and ¢ — 0, respectively. As score functions, we exploit
the van der Waerden one given in Eq. (50) and the t,-score
in Eq. (51) for three different values of v (v = 0.1,1,5).

A. Semiparametric efficiency

In Figs. 1 and 2, MSE indices of the R-estimator in Eq. (54)
are plotted as function of the number L of observations and
then compared with the CSCRB for a shape parameter of the
GG distribution equal to 0.5, i.e. for a heavy-tailed scenario.
Specifically, in Fig. 1 the asymptotic efficiency of the R-
estimator, exploiting a van der Waerden score, is investigated
for the two considered preliminary estimators, i.e. Tyler’s and
Huber’s one. As we can see, the impact of the choice of the
preliminary estimator on the asymptotic efficiency of the R-
estimator is negligible. Similar consideration can be done for
the choice of the particular score function. As shown in Fig.
2 in fact, the MSE curves of the R-estimator are very similar
to each other and close to the CSCRB as L — oo. These
simulations confirm the nearly semiparametric efficiency of
the proposed R-estimator. We said “nearly” because, as an-
ticipated in Sec. III-D, the choice of the score function does
have an impact on the finite-sample performance and on the
robustness to outliers. To see this, in Fig. 3, we report the
MSE indices obtained for the van der Waerden and t,- scores

as function of the shape parameter s in a non-asymptotic
regime, i.e. for L = 5N. The results in Fig. 3 seems to
suggest that the van der Waerden score provide the lowest
MSE index for 0.3 < s < 2 while it presents small loss in
highly heavy-tailed scenarios (0.1 < s < 0.3). Note that van
der Waerden score is perfectly specified for s = 1, i.e. when
the data are Gaussian distributed. As anticipated in Sec. III-D,
this surprisingly good performance of the van der Waerden
score is related to the so-called “Chernoff-Savage” result for
rank-based statistics [35,39].

The t,-scores are more flexible since the additional pa-
rameter v can be used to tune the desired trade-off between
semiparametric efficiency and robustness to outliers, as we
will see ahead. In particular, ¢, -scores characterized by a small
value of v improves the robustness of the resulting R-estimator
at the price of a loss of efficiency. On the other hand, larger
values of v will provide a better efficiency, in particular in
sub-Gaussian scenario, sacrificing the robustness as addressed
in the next section. However, it is important to stress here
that the MSE index of the resulting RR-estimator is lower that
the one of Tyler’s estimator for all the (non-degenerating)
score functions. Moreover, due to the semiparametric nature
of the R-estimator this conclusion holds true regardless the
actual density generator characterizing the data distribution.
While the choice of the score function has an impact of the
properties of the resulting R-estimator, simulation results have
highlighted that the impact of the preliminary estimator is
negligible, as long as it is v/L-consistent and robust (see also
[46] for additional discussions). For this reason and for the
sake of brevity, in the following we will only report the results
obtained by adopting the preliminary Tyler’s estimator.

B. Robustness to outliers

Along with the semiparametric efficiency and distributional
robustness, another fundamental property of a shape matrix
estimator is the robustness to outliers. In the present context,
an outlier is defined as an observation vector that does not
share the same statistical behavior of the main data set, i.e.
it is not CES distributed or/and it hasn’t the same shape
matrix or location parameter. The two main tools used to
quantify the robustness to outliers of an estimator are the
breakdown point (BP) and the influence function (IF) [24, Ch.
11 and 12]. Roughly speaking, the BP indicates the percentage
of “arbitrarily large” outliers that an estimator can tolerate
before providing unreliable “arbitrarily large” estimates. On
the other hand, the IF gives us a measure of the impact
that an infinitesimal perturbation (at a given point) of the
samples distribution may have on the estimation performance.
Unfortunately, the evaluation of the BP and IF may be in-
volved and difficult to obtain in closed form. Anyway, their
“finite-sample” counterparts, called finite-sample BP [47] and
empirical IF (EIF) [48], or sensitivity curve, can be easily
evaluated through numerical simulations.

To evaluate the finite-sample BP for the proposed R-
estimator, we follow the approach discussed in [49]. Let us
start by indicating with Z = {z;}}~, ~ CES(0, V1, ho) the



“pure” GG data set whose hg is given in Eq. (58) and with
Z. ={z}L, ~ fz. the e-contaminated data set s.t.:

fz.(2|V1,ho,0) = (1 —€)CES(0, V1, ho) +eqz(0),

where € € [0, 1/2] is a contamination parameter. The function
gz (o) represents the pdf of an outlier z that we arbitrarily
choose to be as z = 7~ 'u where, as before, u ~ U(Scw)
while 7 ~ Gam(p,1/0) and Gam indicates the Gamma
distribution. Consequently, z|7 is uniformly distributed on the
N sphere of ray 771, ie. Sty £ {z € CV|||z|| = 771}
This implies that we can obtain “arbitrarily large” outlier by
generating arbitrarily small values of 7 ~ Gam(p, 1/0). This
can be achieved by choosing arbitrarily small values of the
shape parameter ¢ > 0 in the Gamma distribution. Let V*”( )

(59)

and V (Z.) be two shape matrix estimators evaluated from
the pure and the e-contaminated data sets, respectively. Then
the finite-sample BP curves can be evaluated as [49]:

BP(2) 2 max { A%, (2), 1/ (0) }

where /\“” ( ) is the i-th ordered eigenvalue of the matrix
[VS"( )] 1VV’( Ze), st AL (e) = - 2 A y(e). Clearly,
When there is no contamination (¢ = 0), we have that
BP?(0) = 1. Any robust estimator should then have a BP
value close to 1 for every value of €, while it may be arbitrarily
large for a non-robust estimator. Fig. 4 shows the BP curves
of the proposed R-estimator exploiting the van der Waerden
and three t,- scores (v = 0.1,1,5). Since BPY(e) depends
on Z and Z., we plot its averaged value over 104 realizations
of these data sets. For the sake of comparison, we report also
the BP value of Tyler’s estimator. All the BP curves, related
to the resulting R-estimator, remain close to the Tyler’s one
for every value of €. On the other hand, the BP of the non-
robust Sample Covariance Matrix (SCM) estimator explodes
to 1017 as soon as ¢ # 0, so we do not include it in the plot.
A visual inspection of Fig. 4 confirms us what already said
in Sec. V-A: t,-scores with a small value of v lead to more
robust estimators. In particular, it can be noted that the BP
curves of the R-estimator with ¢¢ 1- and ¢;-score functions
coincide with the one of Tyler’s estimator.

Let us now focus on the EIF [48]. For the shape matrix
estimation at hand, it can be defined as:

A s s ~
EIFY = (L+1)|[V5(Z) = VE(Z,2)||r,

(60)

(61)

where Z is an outlier distributed according to the pdf gz (o)
defined in Eq. (59). As Eq. (61) suggests, the EIFY gives
us a measure of the impact that a single outlier z has on the
shape matrix estimator V¥ when it is added to the “pure” data
set Z. Moreover, if L is sufficiently large, the expression in
Eq. (61) is a good approximation of the theoretical IF [48].
For this reason, in our simulation we use L = 1000. Since
EIFY depends on Z and z, we plot its averaged value over
10% reahzatlons of the data set and the outlier. As for the IF,
the most important property that the EIF of a robust estimator
should have is the boundedness. In fact, this indicates that
the impact of a single outlier on the estimation performance
is limited. In Fig. 5, we report the EIF of the proposed R-
estimator exploiting the van der Waerden and three ¢,,- scores

(v =0.1,1,5). As benchmark, the EIF of the Tyler’s estimator
is adopted since it is known that the relevant IF is continuous
and bounded [7]. On the other hand, the EIF of the non-
robust SCM grows rapidly to 10* as the norm of the outlier
z increases (i.e. when o — 0), so we do not include it in the
plot. As we can see from Fig. 5, the EIFs of the proposed R-
estimator remain bounded and close to the one of the Tyler’s
estimator for arbitrarily large values of ||z|| (¢ — 0).

C. Algorithmic considerations

This last subsection collects some observations on the
algorithmic implementation of the proposed R-estimator. As
can be seen from the pseudo-code in Sec. IV, the R-
estimator is obtained by applying a linear “one-step” correc-
tion L~'/?[acLg. LY ]7' A%, to a preliminary estimator v

(see step 10 in Algo 1) In partlcular unlike M -estimators that
are obtained as implicit solution of a fixed point equation, it
does not require any iterative implementation. Consequently,
leaving aside the computation of V7, the computational
load of the proposed R-estimator is roughly given by the
amount of calculation needed to i) obtain the L ranks 7}
and vectors U; (see steps 2 and 3 in Algo. 1) and ii) deal
with the (N? — 1) x (N? — 1) matrices Ly,, [Lv,L{ ]
and [Ly,L¥ ]7'. Clearly, this represents a problem as the
dimension N of the observations increases. A possible way
out would be to exploit the structure of Lg., given in Eq.
(43), to reduce the global computational load but this point
falls outside the scope of the present paper.

The second algorithmic consideration is related the choice
of the “small perturbation” matrix H2. The theory does not
provide us with any hint about the optimal selection of this
hyper-parameter, so we decided to define it as a random matrix
H(% = (Gc + Gg)/Z where [G(C]i,j ~ CN(O,’U2), [G(C]l,l =
0. The problem then is reduced to the simpler choice of the
scalar perturbation parameter v. Fortunately, simulation results
seem to suggest that the R-estimator is quite robust w.r.t. the
choice of v for various density generators and various levels of
non-Gaussianity. On the other hand, the choice of v is sensitive
to the data dimension N and to the number of observations L.
As an example, Fig. 6 shows the MSE index of the Vgi) 4w as
function of v for different data dimension IN. As we can see,
the MSE index remains stable for a sufficiently large range of
values for v allowing us for its safe selection.

VI. CONCLUSIONS

In this paper, a distributionally robust and nearly semipara-
metric efficient R-estimator of the shape matrix in Real and
Complex ES distributions has been discussed and analyzed.
This estimator has been firstly proposed by Hallin, Oja and
Paindaveine in their seminal paper [10] where the Le Cam’s
theory of one-step efficient estimators and the properties of
rank-based statistics have been exploited as basic building
blocks for its derivation. In the first part of this paper, a
survey of the main statistical concepts underlying such R-
estimator has been provided for the case of RES-distributed
data. Then, its extension to CES distributions has been derived
by means of the Wirtinger calculus. Finally, the finite-sample



performance of the R-estimator has been investigated in dif-
ferent scenarios in terms of MSE and robustness to outliers.
However, a number of fundamental issues still remain to be
fully addressed. In our opinion, the most important one is
related to the estimation of ac o in Eq. (46) (or, for the real-
valued case, o in Eq. (23)). The estimator in Eq. (53) in
fact is consistent under any possible density generator h € G¢
but it does not satisfy any optimality property. Moreover, it
depends on an hyper-parameter, i.e. the “small perturbation”
matrix H% (or HY in the real-valued case), that has to be
defined by the user in an heuristic way and, currently, without
any theoretical guidelines. A possible improvement w.r.t. the
estimator in Eq. (53) is discussed in [10, Sec. 4.2] and it will
be the subject of future works. Other important open questions
are related to the evaluation of the theoretical BP point and
IF. Closed form expressions of these two quantities will help
to fully understand the robustness properties of the proposed
R-estimator with respect to classical M -estimators.
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Supporting material for the paper:

Robust Semiparametric Efficient Estimators in Complex Elliptically
Symmetric Distributions

Stefano Fortunati, Alexandre Renaux, Frédéric Pascal

I. LE CAM’S ONE-STEP ESTIMATORS IN A NUTSHELL

The aim of this first section is to provide the reader of our paper with some additional discussion about
the general theory of efficient one-step estimators. This class of estimators has its root in the concept of Local
Asymptotic Normality (LAN) of a statistical model. The LAN property has been introduced for the first time by
Le Cam in his fundamental work [1] (see also [2, Ch. 6]) and it has since established itself as a milestone in
modern statistics. Leaving aside the deep theoretical implications that the LAN property has for a given family
of distributions, there is at least one outcome of great interest for any practitioner working in signal processing
(SP) and related fields. As Le Cam showed, if a statistical model is Locally Asymptotic Normal, then it is
possible to derive asymptotically efficient estimators that, unlike the Maximum Likelihood (ML) one, do not
search for the maxima of the log-likelihood function. This fact is of great importance in practical applications,
where the ML estimator can present computational difficulties in the resulting optimization problem or even
existence/uniqueness issues [3, Ch. 6].

We start by introducing the concept of Hellinger differentiability, or differentiability in quadratic mean. Then,
the definition of the LAN property for parametric models will be given and its exploitation, in deriving efficient
one-step estimators, discussed. Finally, the generalization of the previously developed theory to semiparametric
models will be provided.

Algebraic notation: Throughout this document, italics indicates scalar quantities (a), lower case and upper case
boldface indicate column vectors (a) and matrices (A), respectively. Each entry of a matrix A is indicated as
@i = [A]; j. In defines the N x N identity matrix. The superscript T indicates the transpose operator, then
A-T 2 (AT = (AT)~L. The Euclidean norm of a vector a is indicated as ||a||. The determinant and the

Frobenius norm of a matrix A are indicated as |A| and ||A|

F, respectively.
Small o notation: Given a real-valued function f(x) and a strictly positive real-valued function g(x), f(x) =
o(g(x)) if for every positive real number a, there exists a real number xg such that | f(z)| < ag(x), Va > x.
Statistical notation: Let x; be a sequence of random variables in the same probability space. We write:
o x; = op(1) if limj_, o Pr{|z;| > €} = 0,Ve > 0 (convergence in probability to 0),
o x; = Op(1) if for any € > 0, there exists a finite A/ > 0 and a finite L > 0, s.t. Pr{|x;| > M} < ¢, VI > L

(stochastic boundedness).

The cumulative distribution function (cdf) and the related probability density function (pdf) of a random variable
o . . d
x or a random vector x are indicated as Py and px, respectively. For random variables and vectors, = stands

for “has the same distribution as”. The symbol My indicates the convergence in distribution. We indicate the
—00

true pdf as po(x) = px (x|¢o, go), where ¢ and go indicate the true parameter vector to be estimated and the
true nuisance function, respectively. We define as Ey ,{f(x)} = [ f(x)px (x|¢, g)dx the expectation operator
of a measurable function f of a random vector x. Moreover, we simply indicate as Eyp{-} the expectation with



respect to (w.r.t.) the true pdf po(x). The superscript  indicates a v/L-consistent, preliminary, estimator (ﬁ* of

b0, s.t. VL (¢* — ¢o) = Op(1).
Let x € RY be a real-valued random vector and let px be its probability density function (pdf). A parametric

model, characterizing the statistical behavior of x, will be indicated as:

Py = {px|px(x|0); ¢ € Q C R}, (62)

while a semiparametric model will be described as:

Pog = {pxIpx(X|9,9);0 € QC R g € G}, (63)

where G is a suitable set of functions.

A. Hellinger differentiability
Let ¢ € 2 C R? be the parameter vector and let px (x|¢) € Py be a pdf belonging to the parametric model
Py in Eq. (62). We define ug(x) as the following parametric map:
ug : Q— Lo

b > ug(x) = /px(x|@),

where L7 indicates the set of all the square integrable functions. We say that ug is Hellinger differentiable in
¢ € Q if there exists a vector 0y = (%) such that [4, Ch. 2, Def. 1], [5, Ch. 5.5]:

(64)

[ [0 — gl = W7 itg00)] " ax = o). me . [l -0, (65

Then ug = Uy (x) is the Hellinger derivative of ug in ¢ € €. According to [4, Ch. 2, Def. 2], a parametric
model Py is said to be regular if each px(x|¢) € Py is Hellinger differentiable at every ¢ € Q.

The Hellinger differentiability was introduced by Le Cam as the weakest regularity condition required to develop
the LAN theory. However, even if extremely useful for theoretical purposes, the Hellinger differentiability is not
really suitable to derive practical inference algorithms. Fortunately, statistical models involved in practical signal
processing (SP) applications can generally satisfy more stringent assumptions than the one in Eq. (65). This
allows us to link the regularity “d la Le Cam” of a parametric model to more familiar quantities, e.g. the score
vector and the Fisher Information Matrix (FIM), as detailed in the following Proposition (see [4, Ch. 2, Prop.
1] for the proof).

Proposition 1. Let x be a set of N-dimensional, real-valued, random vector sampled from a pdf px € Py in
Eq. (62). Let s = s¢(x) be the score vector defined as:

5¢(x) = Vo Inpx(x[6) (66)
and let I(¢) be the Fisher Information Matrix (FIM):
1(¢) 2 Ey {s¢(x)s;(x)} . 67)

Then, the parametric model Py is regular “d la Le Cam” if the following three sufficient (but not necessary)

conditions are satisfied:

i) px(x|¢) is continuously differentiable in ¢ € 2 for almost all x with gradient ¥V gpx (x|¢),



i) Eg{sg(x) sp(x)} < oo,

iii) The FIM in Eq. (67) is non-singular and continuous in ¢ € €.
If i), ii) and iii) hold true, the Hellinger derivative Qg defined in Eq. (65) can be explicitly expressed as function
of the score vector s¢ in Eq. (66) as:

itg ) = 5 v/Px (x| B (). (68)

The regularity conditions i), if) and iii) in Prop. 1 requires, among others, the pointwise differentiability of the
pdf and consequently they are more stringent than the integral condition in Eq. (65). However, they are generally
satisfied by the vast majority of the statistical models exploited in practical inference problems. For this reason,
in the following discussion, we will assume them for granted but we will always indicate when the obtained

results can be derived starting form the weaker regularity condition in Eq. (65).

B. LAN property and ES distributions

The following Proposition introduces the fundamental LAN property ( [1], [2, Ch. 6], [5, Ch. 7.6]) of a
parametric model satisfying the regularity conditions stated in Prop. 1.

Proposition 2. Let {xl}lel be a set of real-valued, i.i.d. observations sampled from a pdf px belonging to a
regular parametric model Py in Eq. (62). Let Ay(X1,...,Xr) be a random vector, usually referred to as central

sequence, defined as: .
Ap(X1,...,X1) = Ay 4 112 Zl—l s¢(x1), (69)

where s¢(x;) is the score vector given in Eq. (66).
Then, any px (x|@) € Py satisfies the following LAN property:

I [1, px(xi|¢ + L /?h)
HlL:1 Px (Xl‘(p)

where 1(¢) is the FIM given in Eq. (67).
Moreover Ay satisfies the following two properties:

=h'A, - %hTI(d))h +op(1), Vo,heQ, (70)

C1 Asymprotic differentiability (or asymptotic linearity): for all ¢,h € Q)

Agyir-12n — Ay = —1(¢)h +op(1), (71)
C2 Asymptotic normality:
By~ N(OI(9), Vée (72)
— 00

Remark: The proof of Prop. 2 and extensive in-depth discussion about the LAN property can be found in [1],
[2, Ch. 6], and [5, Ch. 7.6].

Before moving on, it is important to stress that the LAN property can be defined in much more general settings,
e.g. for non-i.i.d. observations and for statistical models that do not admit a FIM or even a score vector. Actually,
under the regularity conditions in Prop. 1, the expansion in Eq. (70) can be thought as the second-order Taylor
approximation of the log-likelihood function [5, Ch. 7.2]. Anyway, as said before, even if they are not the weakest
ones, the assumptions made in Prop. 2 are satisfied by many data generating processes in SP applications. In



particular, they are met by the Elliptical Symmetric (ES) distributions. Specifically, let us define the parametric
model of the Real ES (RES) distributions as:

Py = {pxlpx (xI¢) = 272V 200 (x — ) VT 0~ ) 19 € 0 73)

and the parameter vector ¢ is defined in Eq. (6) of our paper as ¢ £ (MT,m(Vl)T)T, where g € RY
is the location vector and V; € MI]Ri, is the shape matrix s.t. [V1];,1 = 1. The general proof of the fact that
the RES model in Eq. (73) is regular and satisfies the LAN property in Prop. 2 has been provided by Hallin
and Paindaveine in [6, Prop. 2.1] (see also [6, Appendix 1]). As mentioned above, this is of great practical
importance because, as proved by Le Cam in [1], [2, Ch. 6], if a parametric model is Local Asymptotic Normal,
then asymptotically efficient estimators of the parameter of interest ¢ can be built using a “one-step linear

correction” to any preliminary v/L-consistent estimator (,Z)* of the true parameter vector ¢.

C. Efficient one-step parametric estimators

In parametric setting, the standard procedure to derive efficient estimators is given by the Maximum Likelihood
theory. Specifically, given a set of i.i.d. data {xl}lL: 1> an asymptotically efficient estimate of the true parameter
vector ¢g € 2 C RY, if it exists, can be obtained as:

~ N L
durL = argmax >, lpx(xile). (74)

As every practitioner knows, solving the optimization problem in Eq. (74) may result to be a prohibitive task
and, in some cases, J) ML May not even exist or may not be unique [3, Ch. 6]. So, it would be useful to figure
out a different methodology to derive efficient estimates.

Under the regularity conditions stated in Prop. 1, if dA)M [, exists, then it satisfies:

A¢<X1’...7XM>‘¢:(Z7A1L EA&ML :0, (75)

where A is the central sequence defined in Eq. (69). Eq. (75) can be thought as a set of ¢ nonlinear equations,
then we can define a new estimator ($ given by the one-step Newton-Raphson approximate solution of Eq. (75)

as:
=0 —[Ia(d) Ay, (76)

where ¢ is a “good” starting point and J A(qg) indicates the Jacobian matrix of A evaluated at ¢. Note that the
approximation in Eq. (76) is valid even if q,’gML does not exists. In [1] and [2, Ch. 6], Le Cam formalized and
generalized this intuitive procedure by providing an asymptotic characterization of the class of efficient one-step

estimators. This fundamental result is summarized in the following theorem (see also [5, Ch. 5.7]).

Theorem 1. Let {X[}lel be a set of i.i.d. observations sampled from the “true” pdf py € Py satisfying the LAN
property as in Prop. 2. Let qg* any preliminary V/L-consistent estimator of the true parameter vector ¢y € S

Then, the one-step estimator
¢=¢ + LU A, (77)

has the following properties:
Pl +/L-consistency
VL (é—¢0) =0p(1), (78)



P2 Asymptotic normality and efficiency
VL <¢ - ¢0)

where I(¢o) ™t = CRB(¢y) is the Cramér-Rao Bound.

N(0,X(¢po) "), (79)

Y
L—oo

Proof: Let us start by showing that the expression defining the one-step estimator in Eq. (77) can be derived
directly from the Newton-Raphson approximation in Eq. (76), using the asymptotic differentiability property CI,
given in Eq. (71), of the central sequence. Specifically, in analogy with the definition of Jacobian matrix, we
have that:

Ja(¢) = —LY?L(¢) + op(1), Yo € Q. (80)

Finally, substituting Eq. (80) in Eq. (76), and noticing that qg* is a good starting point since it is, by definition,
in the v/L-neighborhood of ¢y, yields the expression Eq. (77).

The proof of the v/L-consistency property P1 of qf) can be found in [4, Sec. 2.5, Th. 2]. To prove the property
P2, we start from the intermediate result provided in [4, Sec. 2.3, Th. 1], that is I(¢) 1A ol N(0,I(p)71).

Consequently, using the fact that (2)* is v/ L-consistent, the asymptotic normality and efficiency of 95 in Eq. (77)
follows form a direct application of the Slutsky’s theorem [5, Lemma 2.8]. Note that the same warning raised
up for Prop. 2 holds here for Theorem 1. In fact, in [4, Sec. 2.3, Th. 1 and Sec. 2.5, Th. 2] only the Hellinger
differentiability is required, while here we need to assume the existence of the gradient (w.r.t. ¢ € €2) of the
log-likelihood function. u

Since, as shown in [6, Prop. 2.1], the RES model in Eq. (73) satisfies the LAN property, Theorem 1 can be
readily applied to derive a one-step efficient estimator of the true parameter vector ¢y = (u(—)r ,&CS(VLQ)T)T
The closed form expressions of the score vector sy (and consequently the one of the central sequence Ay) and
of the FIM I(¢), needed to implement the estimator in Eq. (77), can be directly obtained by the ones already

derived in our previous work [7]. Moreover, as preliminary \/L-consistent estimator we may use:

. N T
¢ = (it vees(Viry) ") 81)
where ﬂ;y and \A/'l,Ty are the joint Tyler’s estimates of the location vector and of the shape matrix constrained
to have [V 7y]11 =1 [8], [9].

The result in Theorem 1 would be enough to derive original, asymptotically efficient, estimators of the location
vector po and of the shape matrix Vi in the classical parametric context. Here however, we want to go one

step further towards the semiparametric framework.

D. One-step, semiparametric estimators

A semiparametric model Py 4 is a set of pdfs parameterized by a finite-dimensional parameter vector ¢ € ) C
R? and by a function g € G that usually plays the role of an infinite-dimensional nuisance parameter [4], [10]. As
amply discussed in [7] and [11] the ES distributions are a perfect candidate to be modeled as a semiparametric
model, since we generally do not have any a priori information on the actual density generator gy characterizing

the specific distribution of the observations. Specifically, the RES semiparametric model can be expressed as:

Pog = {pxlpx(xlo.9) =2 2IVi| g (0 = )TV (- ) i € Qg €Gf L 82)



where, as for the parametric case, ¢ = (uT, vecs (Vl)—r)T while G is the set of all the “proper” density generators,
ie. G = {g Rt — RT UOOO tN2=1g(t)dt < 00, [pxdx = 1} [12].

The question that we are going to address here is the following: is it possible to generalize the concept of one-
step estimators, as formalized in Theorem 1, to semiparametric inference problems? To answer to this important
point, let us start by focusing on the main building blocks needed to derive the one-step estimator cfb given, for
the parametric case, in Eq. (77). As already discussed in the dedicated statistical literature (see e.g. [4], [10],
[13]) and in our recent works [7], [11], [14], the semiparametric counterpart of the score vector sy is the efficient
score vector Sy 4, defined as (see [14] and [7, Th. IV.1]):

S¢.90(X) = 8¢9, = 8¢ — (54| Ty,); (83)

where TI(sg|7y,) is the orthogonal projection of the score vector sy in Eq. (66) on the semiparametric nui-
sance tangent space Ty, [15], [5, Ch. 25.4]. The semiparametric counterpart of the FIM I(¢) is the efficient
semiparametric FIM (SFIM) [14], [7, Th. IV.1]:

L(9lg0) £ Eg,g,{8¢.9,(%)5g.,g,(x) ' }. (84)

On the same line of Eq. (69), we introduce the efficient central sequence Kd),g simply as:

Ay y(x1,...,x0) = Ay, _L1/2z Seg(x1), VeQ geG. (85)

The natural “semiparametric” generalization of the ML estimating equations in Eq. (75) would be [5, Ch. 25.8]

A¢’g(X1, U ’XM)‘d):CZ’MLJJ:g* = AQgMLyg* =0 (86)

It must be readily noted that the critical difference between the ML estimating equation in Eq. (75) and their
semiparametric generalization in Eq. (86) is that the latter involve a preliminary /L-consistent, non-parametric,
estimator ¢* of the nuisance function g. Unfortunately, as discussed in [5, Ch. 25.8] and in [4, Ch. 7], it is
generally impossible to find an estimator of the infinite-dimensional nuisance g that converge to the true function
go at the O p(L_l/ 2) rate characterizing most of the parametric estimators. Roughly speaking, the non-parametric
estimation of a function requires much more data then the ones needed to estimate a finite-dimensional parameter.

For the specific problem of the semiparametric shape matrix estimation in RES distributions, in their seminal
work [16], Hallin, Oja and Paindaveine proposed a different approach that does not involve the non-parametric
estimation of gg, still providing nearly semiparametric efficient estimator of ¢ = (,uT, m(Vl)T)T. The basic

idea developed in [16] is to split the semiparametric estimation problem at hand in two parts:

1) Assume that the true density generator gq is known and solve Eq. (86) to derive a “clairvoyant” semipara-
metric estimatior (138.

2) Robustify cf)s by using a distribution-free, rank based, procedure.

To better understand this approach, let us start by analyzing the properties of the clairvoyant efficient central
sequence Ay 4, of a set of RES distributed data.

Proposition 3. Let {xl}lL: 1 be a set of i.i.d. observations sampled from a RES pdf py € Py 4 in Eq. (82). Then,

the clairvoyant efficient central sequence Ay 4 satisfies the following two properties:

CS1 Asymptotic differentiability (or asymptotic linearity): for all ¢,h € )

Agi-12ng, — Agg, = —L(@lgo)h + op(1), 87)



CS2 Asymptotic normality
Dpg ~ N(0I(dlg)), Ve (88)
L—oo

Remark: The proof can be found in [6, Sec. 3].

The result in Prop. 3 suggests us that, for the semiparametric RES estimation problem at hand, it may be
possible to derive semiparametric and asymptotically efficient estimators using a procedure similar to the one
provided in Theorem 1, simply by substituting the parametric score vector and FIM with their semiparametric

counterparts. This intuition is formalized by the next theorem that is also given in our main paper as Theorem 1.

Theorem 2. Let {Xl}lL:1 be a set of i.i.d. observations sampled from a RES distribution with pdf py € Py 4 in Eq.

(82). Let qs* be any preliminary \/L-consistent estimator of the true parameter vector ¢g = (u(—)r , VeCS(Vl,O)T)T.
Then, the clairvoyant semiparametric one-step estimator

bs = ¢+ LU g0) ' Ay, (89)
has the following properties:
PS1 \/E-consistency

VL (s = ¢0) = 0p(1), (90)

PS2 Asymptotic normality and efficiency

VI (s =) ~ N(©Oolg) ™), O

L—oo

where I(¢olgo) ™t = CSCRB(¢o|go) = CSCRB(po, Vilgo) and the constrained semiparametric CRB
(CSCRB) [7] is evaluated for the constraint [V1]11 = 1.

Proof: The expression of the semiparametric one-step estimator in Eq. (89) can be obtained using the same
arguments discussed in Theorem 1. The proof of the v/L-consistency property PS1 of ¢ can be found in [4, Sec.
7.8, Th. 1]. To prove the asymptotic normality, we start from the intermediate result, given in [4, Sec. 3.3, Th.
2], that I(]go) "t Agp.g T N(0,T(¢|go)~"). Then, from the expression Eq. (89) and from the fact that ¢*

is v/ L-consistent, the asymptotic normality and efficiency property PS2 of ¢25 follows from a direct application
of the Slutsky’s theorem (see also [4, Sec. 7.8, Cor. 1]). Again, here we need to assume the existence of the
gradient (w.r.t. ¢ € Q) of the log-likelihood function, while in the proof [4, Sec. 7.8, Th. 1] only the Hellinger
differentiability is required. u

As previously underlined and as we can see from its closed form expression in Eq. (89), the clairvoyant estimator
dA)s relies on the true density generator gg, so it is not useful for inference problems in the semiparametric model
(82) where the density generator is an unknown nuisance function. However, it has the fundamental role to link
the parametric one-step Le Cam’s estimator in Eq. (77) with a distributionally robust estimator of the shape

matrix, as shown in [16] and recalled in Section III of our paper.

II. NUMERICAL ANALYSIS FOR REAL ¢-DISTRIBUTED DATA

This Section mimics Sec. V of the main paper and provides a numerical investigation about the statistical
performance of the real R-estimator in Eq. (38) in real t-distributed data.

As in the main paper, in order to distinguish different estimators, each of them will be indicated as {}fﬂr where
~ and ¢ specify the estimator at hand. Moreover, we re-normalized V‘fﬁ in order to have tr(Vf,Y) = N, ie.
V{ =NV /tr(VE).



As a reference, in the figures we also report the Constrained Semiparametric CRB (CSCRB) derived, in closed

form, in [7]. As performance index for the shape matrix estimators, we use
¢ = ||E{vecs(V¥ — Vo)vecs(VE — Vo) TH|, (92)
Similarly, as performance bound, we adopt the index:

ecscrB = |[[CSCRB(Z, go)]||F- (93)

Unlike the main paper, where a set of complex GG-distributed data are considered, here we generate the dataset
according to a real ¢-distribution. The density generator for the ¢-distribution is [12]: !

N/2p (24N t
RN PI ) (1 * )

A
and the degrees of freedom A € (0, 00) controls the non-Gaussianity of the data. In particular, for small values

_ AN

go(t) = , t€RT (94)

of A the data are highly non-Gaussian while, as A\ — oo, the distribution collapses into the Gaussian one. The
simulation parameters for this study case are:

o [Zolij=p"d,5=1,... N;p=08and N =8.

o The “small perturbation” matrix H° is chosen to be a symmetric random matrix s.t. H® = (G + GT)/2
where [G]; ; ~ N(0,v?), [G]1,1 = 0 and v = 0.01. Note that v should be small enough to guarantee that
Vi+ L71/2H € ME,

As discussed in the main paper, the R-estimator in Eq. (38) depends on two “user-defined” quantities: 1) the
preliminary estimator {\/'f and 2) the score function K,. In order to assess the impact of their choice on the
performance of the R-estimator, we perform our simulations by using the Tyler’s and the Huber’s estimators
as preliminary estimators. Moreover, for the Huber’s estimator, three different values of the tuning parameter ¢
(i.e. ¢ = 0.9,0.5,0.1) have been adopted [17, Sec. V.C]. Moreover, as score functions, we exploit the van der
Waerden one and the t,-score for v = 0.1, 1, 5, given in Eqgs. (34) and (35) of the main paper. As we will see in
the following, the simulation results obtained for the real case are perfectly in line with the one reported in the

main paper for the complex case.

A. Semiparametric efficiency

In Figs. 1(a) and 1(b), MSE indices of the real R-estimator in Eq. (38) are plotted as function of the number
L of t-distributed observations with A = 5 and then compared with the CSCRB. Specifically, in Fig. 1(a) the
asymptotic efficiency of the R-estimator, exploiting a van der Waerden score, is investigated for the two considered
preliminary estimators, i.e. Tyler’s and Huber’s one. As for the complex case, the impact of the choice of the
preliminary estimator on the efficiency of the R-estimator is negligible. Similarly, the asymptotic impact of the
choice of the score functions is also negligible, as shown in Fig. 1(b). However, as for the complex case, the
score function plays a role in the “finite-sample” performance of the estimator. To see this, in Fig. 1(c), we report
the MSE indices obtained for the van der Waerden and t,- scores as function of the degrees of freedom A for
L = 5N. Note that, for A = 5, the t5-score is perfectly specified and then it provides the lowest MSE value at
A = 5. However, as for the complex case, the van der Waerden score confirms its surprisingly good performance

(see the discussion on the “Chernoff-Savage result” provided in the main paper).

"Note that the expression of the density generator in Eq. (94) can be obtained from the one given in [7, Eq. (75)] by putting n = 1.
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Fig. 1: MSE performance of the real R-estimator.

The t,-scores are more flexible since the additional parameter v can be used to tune the desired trade-off
between semiparametric efficiency and robustness to outliers, as we will see ahead. In particular, ¢,-scores
characterized by a small value of v increases the robustness of the resulting R-estimator at the price of a loss
of efficiency. On the other hand, larger values of v will provide a better efficiency, sacrificing the robustness as

addressed in the next section.

B. Robustness to outliers

Following Sec. V.B of the main paper, in this subsection we evaluate the “finite-sample” Breakdown Point
(BP) [18] and the Empirical Influence Function (EIF) [19] for the real R-estimator in Eq. (38).

We indicate with X = {x;}X, ~ RES(0, V1, go) the “pure” t-distributed data set whose gy is given in Eq.
(94) and with X, = {xl}lL:1 ~ fx. the e-contaminated data set s.t.:

fx.(x[V1,90,0) = (1 —€)RES(0, V1, ho) + egx(0), 95)

where ¢ € [0,1/2] is a contamination parameter. The function ¢x (o) represents the pdf of an outlier x that we
arbitrary choose to be as X = 7~ 'u where u ~ U(Sg~) while 7 ~ Gam(g,1/p) and Gam indicates the Gamma
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Fig. 2: BP and EIF of the real R-estimator in ¢-distributed data.

distribution. The reader can find additional discussion about this model in Sec. V.B of the main paper.
Let \Aff (X) and \A/'ff (X¢) be two shape matrix estimators evaluated from the pure and the e-contaminated data

sets, respectively. As for the complex case, the finite-sample BP curves can be evaluated as [18]:
BP#(e) £ max {)\fvl(s), %4 N(s)} , (96)

where Y ;(¢) is the i-th ordered eigenvalue of the matrix [VE(X)|IVE(Z2), sit. AT 1(e) =+ = AF y(e). Note
that BPY(0) = 1.

Fig. 2(a) reports the BP curves of the real R-estimator in Eq. (38) built upon the van der Waerden and three
t,- scores (v = 0.1,1,5). Since BPff (¢) depends on X and X, we plot its averaged value over 10* realizations
of these data sets. For the sake of comparison, we report also the BP value of Tyler’s estimator. The BP of the
non-robust Sample Covariance Matrix (SCM) estimator explodes to 107 as soon as € # 0, so we do not include
it in the plot. As for the complex case, all the BP curves, related to the R-estimator in Eq. (38) are bounded
(w.r.t. the one of the non robust SCM) and close to the Tyler’s one for every value of ¢.

Let us now focus on the EIF. Similarly to the complex case discussed in our paper, the EIF can be defined as:
EIFY £ (L+1)|[V£(X) = V2(X, %)]|, 97)

where X is an outlier distributed according to the pdf gx (o) defined in Eq. (95). We refer the reader to the main
paper for additional discussion on the definition of the EIF in Eq. (97). In Fig. 2(b), we report the EIF of the
real R-estimator in Eq. (38) built upon the van der Waerden and three t,- scores (v = 0.1, 1, 5). As benchmark,
the EIF of the Tyler’s estimator is adopted since it is known that the relevant IF is continuous and bounded [17].
On the other hand, the EIF of the non-robust SCM grows rapidly to 10* as the norm of the outlier X increases
(i.e. when ¢ — 0), so we do not include it in the plot. As for the complex case, Fig. 2(b) shows that the EIFs
of the R-estimator Eq. (38) remain bounded and close to the one of the Tyler’s estimator for arbitrary large vale

of [[x]] (¢ — 0).
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